
Lecture 26 - Prim's Algorithm 1

DATA STRUCTURES AND ALGORITHMS

IMRAN IHSAN

ASSISTANT PROFESSOR

AIR UNIVERSITY, ISLAMABAD

LECTURE 26
PRIM’S ALGORITHM

STRATEGY

Suppose we take a vertex

• Given a single vertex v1, it forms a minimum spanning tree on one vertex

v1

Lecture 26 - Prim's Algorithm 2

STRATEGY

Add that adjacent vertex v2 that has a connecting edge e1 of minimum weight

• This forms a minimum spanning tree on our two vertices and e1 must be in any minimum spanning
tree containing the vertices v1 and v2

v1

v2

e1

STRATEGY

• Suppose we have a known minimum spanning tree on k < n vertices

• How could we extend this minimum spanning tree?

Lecture 26 - Prim's Algorithm 3

STRATEGY

Add that edge ek with least weight that connects this minimum spanning tree to a new vertex vk + 1

• This does create a minimum spanning tree on k + 1 nodes—there is no other edge we could add
that would connect this vertex

• Does the new edge, however, belong to the minimum spanning tree on all n vertices?

vk + 1

ek

STRATEGY

Suppose it does not

• Thus, vertex vk + 1 is connected to the minimum spanning tree via another sequence of edges

vk + 1

ek

Lecture 26 - Prim's Algorithm 4

STRATEGY

Because a minimum spanning tree is connected, there must be a path from vertex vk + 1 back to our
existing minimum spanning tree

• It must be connected along some edge

vk + 1

e

ek

e

STRATEGY

Let w be the weight of this minimum spanning tree

• Recall, however, that when we chose to add vk + 1, it was because ek was the edge connecting an
adjacent vertex with least weight

• Therefore where |e| represents the weight of the edge e

vk + 1

ek

e

ke e

0ke e 

Lecture 26 - Prim's Algorithm 5

MINIMUM SPANNING TREES

Prim’s algorithm for finding the minimum spanning tree states:

• Start with an arbitrary vertex to form a minimum spanning tree on one vertex

• At each step, add that vertex v not yet in the minimum spanning tree that has an edge with least
weight that connects v to the existing minimum spanning sub-tree

• Continue until we have n – 1 edges and n vertices

Another possibility is Kruskal’s algorithm

PRIM’S ALGORITHM

Associate with each vertex three items of data:

• A Boolean flag indicating if the vertex has been visited,

• The minimum distance to the partially constructed tree, and

• A pointer to that vertex which will form the parent node in the resulting tree

For example:

• Add three member variables to the vertex class

• Track three tables

Lecture 26 - Prim's Algorithm 6

PRIM’S ALGORITHM

Initialization:

• Select a root node and set its distance as 0

• Set the distance to all other vertices as ∞

• Set all vertices to being unvisited

• Set the parent pointer of all vertices to 0

PRIM’S ALGORITHM

Iterate while there exists an unvisited vertex with distance < ∞

• Select that unvisited vertex with minimum distance

• Mark that vertex as having been visited

• For each adjacent vertex, if the weight of the connecting edge is less than the current distance to
that vertex:

• Update the distance to equal the weight of the edge

• Set the current vertex as the parent of the adjacent vertex

Lecture 26 - Prim's Algorithm 7

PRIM’S ALGORITHM

Halting Conditions:

• There are no unvisited vertices which have a distance < ∞

If all vertices have been visited, we have a spanning tree of the entire graph

If there are vertices with distance ∞, then the graph is not connected and we only have a minimum
spanning tree of the connected sub-graph containing the root

PRIM’S ALGORITHM

• Let us find the minimum spanning tree for the following undirected weighted graph

Lecture 26 - Prim's Algorithm 8

PRIM’S ALGORITHM

• First we set up the appropriate table and initialize it

Distance Parent

1 F 0 0

2 F ∞ 0

3 F ∞ 0

4 F ∞ 0

5 F ∞ 0

6 F ∞ 0

7 F ∞ 0

8 F ∞ 0

9 F ∞ 0

PRIM’S ALGORITHM

• Visiting vertex 1, we update vertices 2, 4, and 5

Distance Parent

1 T 0 0

2 F 4 1

3 F ∞ 0

4 F 1 1

5 F 8 1

6 F ∞ 0

7 F ∞ 0

8 F ∞ 0

9 F ∞ 0

Lecture 26 - Prim's Algorithm 9

PRIM’S ALGORITHM

What these numbers really mean is that at this point, we could extend the trivial tree containing
just the root node by one of the three possible children:

As we wish to find a minimum spanning tree, it makes sense we add that vertex with a connecting
edge with least weight

PRIM’S ALGORITHM

The next unvisited vertex with minimum distance is vertex 4

• Update vertices 2, 7, 8

• Don’t update vertex 5

Distance Parent

1 T 0 0

2 F 2 4

3 F ∞ 0

4 T 1 1

5 F 8 1

6 F ∞ 0

7 F 9 4

8 F 8 4

9 F ∞ 0

Lecture 26 - Prim's Algorithm 10

PRIM’S ALGORITHM

Now that we have updated all vertices adjacent to vertex 4, we can extend the tree by adding one
of the edges

(1, 5), (4, 2), (4, 7), or (4, 8)

We add that edge with the least
weight: (4, 2)

PRIM’S ALGORITHM

Next visit vertex 2

• Update 3, 5, and 6

Distance Parent

1 T 0 0

2 T 2 4

3 F 2 2

4 T 1 1

5 F 6 2

6 F 1 2

7 F 9 4

8 F 8 4

9 F ∞ 0

Lecture 26 - Prim's Algorithm 11

PRIM’S ALGORITHM

• Again looking at the shortest edges to each of the vertices adjacent to the current tree, we note
that we can add (2, 6) with the least increase in weight

PRIM’S ALGORITHM

Next, we visit vertex 6:

• update vertices 5, 8, and 9

Distance Parent

1 T 0 0

2 T 2 4

3 F 2 2

4 T 1 1

5 F 3 6

6 T 1 2

7 F 9 4

8 F 7 6

9 F 8 6

Lecture 26 - Prim's Algorithm 12

PRIM’S ALGORITHM

The edge with least weight is (2, 3)

• This adds the weight of 2 to the weight minimum spanning tree

PRIM’S ALGORITHM

• Next, we visit vertex 3 and update 5

Distance Parent

1 T 0 0

2 T 2 4

3 T 2 2

4 T 1 1

5 F 2 3

6 T 1 2

7 F 9 4

8 F 7 6

9 F 8 6

Lecture 26 - Prim's Algorithm 13

PRIM’S ALGORITHM

• At this point, we can extend the tree by adding the edge (3, 5)

PRIM’S ALGORITHM

• Visiting vertex 5, we update 7, 8, 9

Distance Parent

1 T 0 0

2 T 2 4

3 T 2 2

4 T 1 1

5 T 2 3

6 T 1 2

7 F 4 5

8 F 1 5

9 F 5 5

Lecture 26 - Prim's Algorithm 14

PRIM’S ALGORITHM

At this point, there are three possible edges which we could include which will extend the tree

The edge to 8 has the least weight

PRIM’S ALGORITHM

• Visiting vertex 8, we only update vertex 9

Distance Parent

1 T 0 0

2 T 2 4

3 T 2 2

4 T 1 1

5 T 2 3

6 T 1 2

7 F 4 5

8 T 1 5

9 F 3 8

Lecture 26 - Prim's Algorithm 15

PRIM’S ALGORITHM

• There are no other vertices to update while visiting vertex 9

Distance Parent

1 T 0 0

2 T 2 4

3 T 2 2

4 T 1 1

5 T 2 3

6 T 1 2

7 F 4 5

8 T 1 5

9 T 3 8

PRIM’S ALGORITHM

• And neither are there any vertices to update when visiting vertex 7

Distance Parent

1 T 0 0

2 T 2 4

3 T 2 2

4 T 1 1

5 T 2 3

6 T 1 2

7 T 4 5

8 T 1 5

9 T 3 8

Lecture 26 - Prim's Algorithm 16

PRIM’S ALGORITHM

At this point, there are no more unvisited vertices, and therefore we are done

If at any point, all remaining vertices had a distance of ∞, this would indicate that the graph is not
connected

• in this case, the minimum spanning tree would only span one connected sub-graph

PRIM’S ALGORITHM

• Using the parent pointers, we can now construct the minimum spanning tree

Distance Parent

1 T 0 0

2 T 2 4

3 T 2 2

4 T 1 1

5 T 2 3

6 T 1 2

7 T 4 5

8 T 1 5

9 T 3 8

Lecture 26 - Prim's Algorithm 17

PRIM’S ALGORITHM

To summarize:

• we begin with a vertex which represents the root

• starting with this trivial tree and iteration, we find the shortest edge which we can add to this already
existing tree to expand it

This is a reasonably efficient algorithm: the number of visits to vertices is kept to a minimum

