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DEFINITION

• A linked list is a data structure where each object is stored in a node

• As well as storing data, the node must also contains a reference/pointer to the node 
containing the next item of data

• We must dynamically create the nodes in a linked list

• Thus, because new returns a pointer, the logical manner in which to track a linked lists is 
through a pointer

• A Node class must store the data and a reference to the next node (also a pointer) 
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NODE CLASS

The node must store data and a pointer:

class Node {

private:

int element;

Node *next_node;

public:

Node( int = 0, Node * = nullptr );

int retrieve() const;

Node *next() const;

};

LINKED LISTS
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NODE CONSTRUCTOR

The constructor assigns the two member variables based on the arguments

Node::Node( int e, Node *n ):

element( e ),

next_node( n ) {

// empty constructor

}

The default values are given in the class definition:

class Node {
private:

int element;
Node *next_node;

public:
Node( int = 0, Node * = nullptr );
int retrieve() const;
Node *next() const;

};
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ACCESSORS

The two member functions are accessors which simply return the element and the 
next_node member variables, respectively

int Node::retrieve() const {
return element;

}

Node *Node::next() const {

return next_node;

}

• Member functions that do not change the object acted upon are variously called accessors, readonly functions, 
inspectors, and, when it involves simply returning a member variable, getters

LINKED LISTS
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ACCESSORS

• In C++, a member function cannot have the same name as a member variable

• Possible solutions:

• Always use the naming convention and coding styles used by your employer— even if you 
disagree with them Consistency aids in maintenance
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7

CLASS

• Because each node in a linked lists refers to the next, the linked list class need only link to the 
first node in the list

• The linked list class requires member variable:  a pointer to a node

class List {

private:

Node *list_head;

// ...

};

LINKED LIST
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STRUCTURE

• To begin, let us look at the internal representation of a linked list

• Suppose we want a linked list to store the values

42 95 70 81

• in this order

• A linked list uses linked allocation, and therefore each node may appear anywhere in memory

• Also the memory required for each node equals the memory required by the member 
variables

• 4 bytes for the linked list (a pointer)

• 8 bytes for each node (an int and a pointer)

• We are assuming a 32-bit machine
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STRUCTURE

• Such a list could occupy memory as follows:

Linked List Object

LINKED LIST
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STRUCTURE

• The next_node pointers store the addresses of the next node in the list
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STRUCTURE

• Because the addresses are arbitrary, we can remove that information:

LINKED LIST
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STRUCTURE

• We will clean up the representation as follows:

• We do not specify the addresses because they are arbitrary and:

• The contents of the circle is the element

• The next_node pointer is represented by an arrow

list_
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OPERATIONS

• First, we want to create a linked list

• We also want to be able to:

• insert into,

• access, and

• erase from

• the elements stored in the linked list

LINKED LIST
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OPERATIONS

• We can do them with the following operations:

• Adding, retrieving, or removing the value at the front of the linked list

void push_front( int );

int front() const;

void pop_front();

• We may also want to access the head of the linked list

Node *head() const;

Member functions that may change the object acted
upon are variously called mutators, modifiers,
and, when it involves changing a single member
variable, setters
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OPERATIONS

• All these operations relate to the first node of the linked list

• We may want to perform operations on an arbitrary node of the linked list, for example:

• Find the number of instances of an integer in the list:

int count( int ) const;

• Remove all instances of an integer from the list:

int erase( int );

LINKED LIST
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ADDITIONAL FUNCTIONS

• Is the linked list empty?

bool empty() const;

• How many objects are in the list?

int size() const;

• The list is empty when the list_head pointer is set to nullptr
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SIMPLE BUT INCOMPLETE CLASS

class List {

private:

Node *list_head;

public:

List();

// Accessors

bool empty() const;

int size() const;

int front() const;

Node *head() const;

int count( int ) const;

// Mutators

void push_front( int );

int pop_front();

int erase( int );

};

LINKED LIST
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CONSTRUCTOR

• The constructor initializes the linked list

• We do not count how may objects are in this list, thus:

• we must rely on the last pointer in the linked list to point to a special value

• in C++, that standard value is nullptr

• Thus, in the constructor, we assign list_head the value nullptr

List::List():list_head( nullptr ) {

// empty constructor

}

• We will always ensure that when a linked list is empty, the list head is assigned nullptr
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ALLOCATION

• The constructor is called whenever an object is created, either:

• Statically

• The statement List ls; defines ls to be a linked list and the
compiler deals with memory allocation

• Dynamically

• The statement

List *pls = new List();

• requests sufficient memory from the OS to store an instance of the class

• In both cases, the memory is allocated and then the constructor is called

LINKED LIST
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STATIC ALLOCATION

int f() {

List ls;   // ls is declared as a local variable on the stack

ls.push_front( 3 );

cout << ls.front() << endl;

// The return value is evaluated

// The compiler then calls the destructor for local variables

// The memory allocated for 'ls' is deallocated

return 0;

}
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LINKED LIST MEMBER FUNCTION

bool List::empty() const {

if ( list_head == nullptr ) {

return true;

} else {

return false;

}

}   

Better yet:

bool List::empty() const {

return ( list_head == nullptr );

}

NODE *HEAD() CONST
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LINKED LIST MEMBER FUNCTION

The member function Node *head() const is easy enough to implement:

Node *List::head() const {

return list_head;

}

This will always work:  if the list is empty, it will return nullptr



Lecture 03 - Linked List 12
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LINKED LIST MEMBER FUNCTION

• To get the first element in the linked list, we must access the node to which the list_head is 
pointing

• Because we have a pointer, we must use the  operator to call the member function:

int List::front() const {

return head()->retrieve();

}

• The member function int front() const requires some additional consideration, however:

• what if the list is empty?

• If we tried to access a member function of a pointer set to nullptr, we would access restricted 
memory

• The operating system would terminate the running program

INT FRONT() CONST
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LINKED LIST MEMBER FUNCTION

• Instead, we can use an exception handling mechanism where we thrown an exception

• We define a class

class underflow {

// emtpy

};

• and then we throw an instance of this class:

throw underflow();

• Thus, the full function is

int List::front() const {

if ( empty() ) {

throw underflow();
}

return head()->retrieve();

}
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LINKED LIST MEMBER FUNCTION

• Why is emtpy() better than

int List::front() const {

if ( list_head == nullptr ) {

throw underflow();
}

return list_head->element;

}

?

• Two benefits:

• More readable

• If the implementation changes we do nothing

VOID PUSH_FRONT( INT )
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LINKED LIST MEMBER FUNCTION

• Next, let us add an element to the list

• If it is empty, we start with:

• and, if we try to add 81, we should end up with:

• To visualize what we must do:

• We must create a new node which:

• stores the value 81, and

• is pointing to 0

• We must then assign its address to list_head

• We can do this as follows:

list_head = new Node( 81, nullptr );

• We could also use the default value...
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LINKED LIST MEMBER FUNCTION

• Suppose however, we already have a non-empty list

• Adding 70, we want:

• To achieve this, we must we must create a new node which:

• stores the value 70, and

• is pointing to the current list head

• we must then assign its address to list_head

• We can do this as follows:

list_head = new Node( 70, list_head );

VOID PUSH_FRONT( INT )
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LINKED LIST MEMBER FUNCTION

• Thus, our implementation could be:

void List::push_front( int n ) {

if ( empty() ) {

list_head = new Node( n, nullptr );

} else {

list_head = new Node( n, head() );

}

}

• We could, however, note that when the list is empty,
list_head == 0, thus we could shorten this to:

void List::push_front( int n ) {

list_head = new Node( n, list_head );

}
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LINKED LIST MEMBER FUNCTION

• Are we allowed to do this?

void List::push_front( int n ) {

list_head = new Node( n, head() );

}

• Yes: The right-hand side of an assignment is evaluated first

The original value of list_head is accessed first before the function call is made 

VOID PUSH_FRONT( INT )
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LINKED LIST MEMBER FUNCTION

• Question:  does this work?

void List::push_front( int n ) {

Node new_node( n, head() );

list_head = &new_node;

}

• Why or why not?  What happens to new_node?

• How does this differ from

void List::push_front( int n ) {

Node *new_node = new Node( n, head() );

list_head = new_node;

}
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LINKED LIST MEMBER FUNCTION

• Erasing from the front of a linked list is even easier:

• We assign the list head to the next pointer of the first node

• Graphically, given:

• we want:

VOID POP_FRONT( INT )
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LINKED LIST MEMBER FUNCTION

• Easy Enough

int List::pop_front() {

int e = front();

list_head = head()->next();

return e;

}

• Unfortunately, we have some problems:

• The list may be empty

• We still have the memory allocated for the node containing 70
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LINKED LIST MEMBER FUNCTION

• Does this work?

int List::pop_front() {

if ( empty() ) {

throw underflow();

}

int e = front();

delete head();

list_head = head()->next();

return e;

}

VOID POP_FRONT( INT )
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LINKED LIST MEMBER FUNCTION

• The problem is, we are accessing a node which we have just deleted

• Unfortunately, this will work more than 99% of the time:

• The running program (process) may still own the memory

• Once in a while it will fail ...

• ... and it will be almost impossible to debug
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LINKED LIST MEMBER FUNCTION

• The correct implementation assigns a temporary pointer to point to the node being deleted:

int List::pop_front() {

if ( empty() ) {

throw underflow();

}

int e = front();

Node *ptr = list_head;

list_head = list_head->next();

delete ptr;

return e;

}

VOID POP_FRONT( INT )
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LINKED LIST MEMBER FUNCTION

• The correct implementation assigns a temporary pointer to point to the node being deleted:

int List::pop_front() {

if ( empty() ) {

throw underflow();

}

int e = front();

Node *ptr = list_head;

list_head = list_head->next();

delete ptr;

return e;

}
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LINKED LIST MEMBER FUNCTION

• The correct implementation assigns a temporary pointer to point to the node being deleted:

int List::pop_front() {

if ( empty() ) {

throw underflow();

}

int e = front();

Node *ptr = list_head;

list_head = list_head->next();

delete ptr;

return e;

}

VOID POP_FRONT( INT )
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LINKED LIST MEMBER FUNCTION

• The correct implementation assigns a temporary pointer to point to the node being deleted:

int List::pop_front() {

if ( empty() ) {

throw underflow();

}

int e = front();

Node *ptr = list_head;

list_head = list_head->next();

delete ptr;

return e;

}
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LINKED LIST MEMBER FUNCTION

• The correct implementation assigns a temporary pointer to point to the node being deleted:

int List::pop_front() {

if ( empty() ) {

throw underflow();

}

int e = front();

Node *ptr = list_head;

list_head = list_head->next();

delete ptr;

return e;

}

STEPPING THROUGH
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A LINKED LIST

• The next step is to look at member functions which potentially require us to step through the 
entire list:

int size() const;

int count( int ) const;

int erase( int );

• The second counts the number of instances of an integer, and the last removes the nodes 
containing that integer

• The process of stepping through a linked list can be thought of as being analogous to a for-
loop:

• We initialize a temporary pointer with the list head

• We continue iterating until the pointer equals nullptr

• With each step, we set the pointer to point to the next object
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A LINKED LIST

• Thus we have:

for ( Node *ptr = head(); ptr != nullptr; ptr = ptr->next() ) {

// do something

// use ptr->fn() to call member functions

// use ptr->var to assign/access member variables

}

• Analogously

for ( Node *ptr = head(); ptr != nullptr; ptr = ptr->next() )

for ( int i = 0;            i != N;          ++i )

STEPPING THROUGH
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A LINKED LIST

• With the initialization and first iteration of the loop, we have:

• ptr != nullptr and thus we evaluate the body of the loop and then set ptr to the next pointer of 
the node it is pointing to

• ptr != nullptr and thus we evaluate the loop and increment the pointer

• In the loop, we can access the value being pointed to by using ptr->retrieve()
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A LINKED LIST

• ptr != nullptr and thus we evaluate the loop and increment the pointer

• Also, in the loop, we can access the next node in the list by using ptr->next()

• ptr != nullptr and thus we evaluate the loop and increment the pointer

• This last increment causes ptr == nullptr

• Here, we check and find ptr != nullptr is false, and thus we exit the  loop

• Because the variable ptr was declared inside the loop, we can no longer access it

INT COUNT( INT ) CONST
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LINKED LIST MEMBER FUNCTION

• To implement  int count(int) const, we simply check if the argument matches the element with 
each step

• Each time we find a match, we increment the count

• When the loop is finished, we return the count

• The size function is simplification of count

int List::count( int n ) const {

int node_count = 0;

for ( Node *ptr = list(); ptr != nullptr; ptr = ptr->next() ) {

if ( ptr->retrieve() == n ) {

++node_count;

}

}

return node_count;

}
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LINKED LIST MEMBER FUNCTION

• To remove an arbitrary element, i.e., to implement
int erase( int ), we must update the previous node

• For example, given

• if we delete 70, we want to end up with

ACCESS PRIVATE MEMBER VARIABLES
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IN A LINKED LIST

• Notice that the erase function must modify the member variables of the node prior to the 
node being removed

• Thus, it must have access to the member variable next_node

• We could supply the member function

void set_next( Node * );

• however, this would be globally accessible

• Possible solutions:

• Friends

• Nested classes

• Inner classes
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FRIENDS

• In C++, you explicitly break encapsulation by declaring the class List to be a friend of the class 
Node:

class Node {

Node *next() const;

// ... declaration ...

friend class List;

};

• Now, inside erase (a member function of List), you can modify all the member variables of any 
instance of the Node class

INT ERASE (INT)
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LINKED LIST MEMBER FUNCTION

• For example, the erase member function could be implemented using the following code

int List::erase( int n ) {

int node_count = 0;

// ...

for ( Node *ptr = head(); ptr != nullptr; ptr = ptr->next() ) {

// ...

if ( some condition ) {

ptr->next_node = ptr->next()->next();

// ...

++node_count;

}

}

return node_count;

}
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LINKED LIST

• We dynamically allocated memory each time we added a new int into this list

• Suppose we delete a list before we remove everything from it
• This would leave the memory allocated with no reference to it

• Thus we need

class List {

private:

Node *list_head;

public:

List();

~List();

// ...etc...

};

DESTRUCTOR
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LINKED LIST

• The destructor has to delete any memory which had been allocated but has not yet been 
deallocated

• This is straight-forward enough:

while ( !empty() ) {

pop_front();

}
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• If such a function is defined, every time an instance is passed by value, the copy constructor is 
called to make that copy

• Additionally, you can use the copy constructor as follows:

List ls1;

ls1.push_front( 4 );

ls1.push_front( 2 );

List ls2( ls1 ); // make a copy of ls1

• When an object is returned by value, again, the copy constructor is called to make a copy of 
the returned value

ASSIGNMENT
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• Suppose you have linked lists

List lst1, lst2;

lst1.push_front( 35 );

lst1.push_front( 18 );

lst2.push_front( 94 );

lst2.push_front( 72 );



Lecture 03 - Linked List 27

LINKED LIST

53

COMPLETE CLASS

class List {

private:

Node *list_head;

void swap( List & );

public:

// Constructors and destructors

List();

List( List const & );

List( List && );

~List();

// Assignment operators

List &operator = ( List const & );

List &operator = ( List && );

// Accessors

bool empty() const;

int size() const;

int front() const;

Node *head() const;

int count( int ) const;

// Mutators

void push_front( int );

int pop_front();

int erase( int );

};
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