
Lecture 03 - Linked List 1

DATA STRUCTURES AND ALGORITHMS

IMRAN IHSAN

ASSISTANT PROFESSOR

AIR UNIVERSITY, ISLAMABAD

LECTURE 03
LINKED LIST

LINKED LISTS

2

DEFINITION

• A linked list is a data structure where each object is stored in a node

• As well as storing data, the node must also contains a reference/pointer to the node
containing the next item of data

• We must dynamically create the nodes in a linked list

• Thus, because new returns a pointer, the logical manner in which to track a linked lists is
through a pointer

• A Node class must store the data and a reference to the next node (also a pointer)

Lecture 03 - Linked List 2

LINKED LISTS

3

NODE CLASS

The node must store data and a pointer:

class Node {

private:

int element;

Node *next_node;

public:

Node(int = 0, Node * = nullptr);

int retrieve() const;

Node *next() const;

};

LINKED LISTS

4

NODE CONSTRUCTOR

The constructor assigns the two member variables based on the arguments

Node::Node(int e, Node *n):

element(e),

next_node(n) {

// empty constructor

}

The default values are given in the class definition:

class Node {
private:

int element;
Node *next_node;

public:
Node(int = 0, Node * = nullptr);
int retrieve() const;
Node *next() const;

};

Lecture 03 - Linked List 3

LINKED LISTS

5

ACCESSORS

The two member functions are accessors which simply return the element and the
next_node member variables, respectively

int Node::retrieve() const {
return element;

}

Node *Node::next() const {

return next_node;

}

• Member functions that do not change the object acted upon are variously called accessors, readonly functions,
inspectors, and, when it involves simply returning a member variable, getters

LINKED LISTS

6

ACCESSORS

• In C++, a member function cannot have the same name as a member variable

• Possible solutions:

• Always use the naming convention and coding styles used by your employer— even if you
disagree with them Consistency aids in maintenance

Lecture 03 - Linked List 4

LINKED LIST

7

CLASS

• Because each node in a linked lists refers to the next, the linked list class need only link to the
first node in the list

• The linked list class requires member variable: a pointer to a node

class List {

private:

Node *list_head;

// ...

};

LINKED LIST

8

STRUCTURE

• To begin, let us look at the internal representation of a linked list

• Suppose we want a linked list to store the values

42 95 70 81

• in this order

• A linked list uses linked allocation, and therefore each node may appear anywhere in memory

• Also the memory required for each node equals the memory required by the member
variables

• 4 bytes for the linked list (a pointer)

• 8 bytes for each node (an int and a pointer)

• We are assuming a 32-bit machine

Lecture 03 - Linked List 5

LINKED LIST

9

STRUCTURE

• Such a list could occupy memory as follows:

Linked List Object

LINKED LIST

10

STRUCTURE

• The next_node pointers store the addresses of the next node in the list

Lecture 03 - Linked List 6

LINKED LIST

11

STRUCTURE

• Because the addresses are arbitrary, we can remove that information:

LINKED LIST

12

STRUCTURE

• We will clean up the representation as follows:

• We do not specify the addresses because they are arbitrary and:

• The contents of the circle is the element

• The next_node pointer is represented by an arrow

list_

Lecture 03 - Linked List 7

LINKED LIST

13

OPERATIONS

• First, we want to create a linked list

• We also want to be able to:

• insert into,

• access, and

• erase from

• the elements stored in the linked list

LINKED LIST

14

OPERATIONS

• We can do them with the following operations:

• Adding, retrieving, or removing the value at the front of the linked list

void push_front(int);

int front() const;

void pop_front();

• We may also want to access the head of the linked list

Node *head() const;

Member functions that may change the object acted
upon are variously called mutators, modifiers,
and, when it involves changing a single member
variable, setters

Lecture 03 - Linked List 8

LINKED LIST

15

OPERATIONS

• All these operations relate to the first node of the linked list

• We may want to perform operations on an arbitrary node of the linked list, for example:

• Find the number of instances of an integer in the list:

int count(int) const;

• Remove all instances of an integer from the list:

int erase(int);

LINKED LIST

16

ADDITIONAL FUNCTIONS

• Is the linked list empty?

bool empty() const;

• How many objects are in the list?

int size() const;

• The list is empty when the list_head pointer is set to nullptr

Lecture 03 - Linked List 9

LINKED LIST

17

SIMPLE BUT INCOMPLETE CLASS

class List {

private:

Node *list_head;

public:

List();

// Accessors

bool empty() const;

int size() const;

int front() const;

Node *head() const;

int count(int) const;

// Mutators

void push_front(int);

int pop_front();

int erase(int);

};

LINKED LIST

18

CONSTRUCTOR

• The constructor initializes the linked list

• We do not count how may objects are in this list, thus:

• we must rely on the last pointer in the linked list to point to a special value

• in C++, that standard value is nullptr

• Thus, in the constructor, we assign list_head the value nullptr

List::List():list_head(nullptr) {

// empty constructor

}

• We will always ensure that when a linked list is empty, the list head is assigned nullptr

Lecture 03 - Linked List 10

LINKED LIST

19

ALLOCATION

• The constructor is called whenever an object is created, either:

• Statically

• The statement List ls; defines ls to be a linked list and the
compiler deals with memory allocation

• Dynamically

• The statement

List *pls = new List();

• requests sufficient memory from the OS to store an instance of the class

• In both cases, the memory is allocated and then the constructor is called

LINKED LIST

20

STATIC ALLOCATION

int f() {

List ls; // ls is declared as a local variable on the stack

ls.push_front(3);

cout << ls.front() << endl;

// The return value is evaluated

// The compiler then calls the destructor for local variables

// The memory allocated for 'ls' is deallocated

return 0;

}

Lecture 03 - Linked List 11

BOOL EMPTY() CONST

21

LINKED LIST MEMBER FUNCTION

bool List::empty() const {

if (list_head == nullptr) {

return true;

} else {

return false;

}

}

Better yet:

bool List::empty() const {

return (list_head == nullptr);

}

NODE *HEAD() CONST

22

LINKED LIST MEMBER FUNCTION

The member function Node *head() const is easy enough to implement:

Node *List::head() const {

return list_head;

}

This will always work: if the list is empty, it will return nullptr

Lecture 03 - Linked List 12

INT FRONT() CONST

23

LINKED LIST MEMBER FUNCTION

• To get the first element in the linked list, we must access the node to which the list_head is
pointing

• Because we have a pointer, we must use the  operator to call the member function:

int List::front() const {

return head()->retrieve();

}

• The member function int front() const requires some additional consideration, however:

• what if the list is empty?

• If we tried to access a member function of a pointer set to nullptr, we would access restricted
memory

• The operating system would terminate the running program

INT FRONT() CONST

24

LINKED LIST MEMBER FUNCTION

• Instead, we can use an exception handling mechanism where we thrown an exception

• We define a class

class underflow {

// emtpy

};

• and then we throw an instance of this class:

throw underflow();

• Thus, the full function is

int List::front() const {

if (empty()) {

throw underflow();
}

return head()->retrieve();

}

Lecture 03 - Linked List 13

INT FRONT() CONST

25

LINKED LIST MEMBER FUNCTION

• Why is emtpy() better than

int List::front() const {

if (list_head == nullptr) {

throw underflow();
}

return list_head->element;

}

?

• Two benefits:

• More readable

• If the implementation changes we do nothing

VOID PUSH_FRONT(INT)

26

LINKED LIST MEMBER FUNCTION

• Next, let us add an element to the list

• If it is empty, we start with:

• and, if we try to add 81, we should end up with:

• To visualize what we must do:

• We must create a new node which:

• stores the value 81, and

• is pointing to 0

• We must then assign its address to list_head

• We can do this as follows:

list_head = new Node(81, nullptr);

• We could also use the default value...

Lecture 03 - Linked List 14

VOID PUSH_FRONT(INT)

27

LINKED LIST MEMBER FUNCTION

• Suppose however, we already have a non-empty list

• Adding 70, we want:

• To achieve this, we must we must create a new node which:

• stores the value 70, and

• is pointing to the current list head

• we must then assign its address to list_head

• We can do this as follows:

list_head = new Node(70, list_head);

VOID PUSH_FRONT(INT)

28

LINKED LIST MEMBER FUNCTION

• Thus, our implementation could be:

void List::push_front(int n) {

if (empty()) {

list_head = new Node(n, nullptr);

} else {

list_head = new Node(n, head());

}

}

• We could, however, note that when the list is empty,
list_head == 0, thus we could shorten this to:

void List::push_front(int n) {

list_head = new Node(n, list_head);

}

Lecture 03 - Linked List 15

VOID PUSH_FRONT(INT)

29

LINKED LIST MEMBER FUNCTION

• Are we allowed to do this?

void List::push_front(int n) {

list_head = new Node(n, head());

}

• Yes: The right-hand side of an assignment is evaluated first

The original value of list_head is accessed first before the function call is made

VOID PUSH_FRONT(INT)

30

LINKED LIST MEMBER FUNCTION

• Question: does this work?

void List::push_front(int n) {

Node new_node(n, head());

list_head = &new_node;

}

• Why or why not? What happens to new_node?

• How does this differ from

void List::push_front(int n) {

Node *new_node = new Node(n, head());

list_head = new_node;

}

Lecture 03 - Linked List 16

VOID POP_FRONT(INT)

31

LINKED LIST MEMBER FUNCTION

• Erasing from the front of a linked list is even easier:

• We assign the list head to the next pointer of the first node

• Graphically, given:

• we want:

VOID POP_FRONT(INT)

32

LINKED LIST MEMBER FUNCTION

• Easy Enough

int List::pop_front() {

int e = front();

list_head = head()->next();

return e;

}

• Unfortunately, we have some problems:

• The list may be empty

• We still have the memory allocated for the node containing 70

Lecture 03 - Linked List 17

VOID POP_FRONT(INT)

33

LINKED LIST MEMBER FUNCTION

• Does this work?

int List::pop_front() {

if (empty()) {

throw underflow();

}

int e = front();

delete head();

list_head = head()->next();

return e;

}

VOID POP_FRONT(INT)

34

LINKED LIST MEMBER FUNCTION

• The problem is, we are accessing a node which we have just deleted

• Unfortunately, this will work more than 99% of the time:

• The running program (process) may still own the memory

• Once in a while it will fail ...

• ... and it will be almost impossible to debug

Lecture 03 - Linked List 18

VOID POP_FRONT(INT)

35

LINKED LIST MEMBER FUNCTION

• The correct implementation assigns a temporary pointer to point to the node being deleted:

int List::pop_front() {

if (empty()) {

throw underflow();

}

int e = front();

Node *ptr = list_head;

list_head = list_head->next();

delete ptr;

return e;

}

VOID POP_FRONT(INT)

36

LINKED LIST MEMBER FUNCTION

• The correct implementation assigns a temporary pointer to point to the node being deleted:

int List::pop_front() {

if (empty()) {

throw underflow();

}

int e = front();

Node *ptr = list_head;

list_head = list_head->next();

delete ptr;

return e;

}

Lecture 03 - Linked List 19

VOID POP_FRONT(INT)

37

LINKED LIST MEMBER FUNCTION

• The correct implementation assigns a temporary pointer to point to the node being deleted:

int List::pop_front() {

if (empty()) {

throw underflow();

}

int e = front();

Node *ptr = list_head;

list_head = list_head->next();

delete ptr;

return e;

}

VOID POP_FRONT(INT)

38

LINKED LIST MEMBER FUNCTION

• The correct implementation assigns a temporary pointer to point to the node being deleted:

int List::pop_front() {

if (empty()) {

throw underflow();

}

int e = front();

Node *ptr = list_head;

list_head = list_head->next();

delete ptr;

return e;

}

Lecture 03 - Linked List 20

VOID POP_FRONT(INT)

39

LINKED LIST MEMBER FUNCTION

• The correct implementation assigns a temporary pointer to point to the node being deleted:

int List::pop_front() {

if (empty()) {

throw underflow();

}

int e = front();

Node *ptr = list_head;

list_head = list_head->next();

delete ptr;

return e;

}

STEPPING THROUGH

40

A LINKED LIST

• The next step is to look at member functions which potentially require us to step through the
entire list:

int size() const;

int count(int) const;

int erase(int);

• The second counts the number of instances of an integer, and the last removes the nodes
containing that integer

• The process of stepping through a linked list can be thought of as being analogous to a for-
loop:

• We initialize a temporary pointer with the list head

• We continue iterating until the pointer equals nullptr

• With each step, we set the pointer to point to the next object

Lecture 03 - Linked List 21

STEPPING THROUGH

41

A LINKED LIST

• Thus we have:

for (Node *ptr = head(); ptr != nullptr; ptr = ptr->next()) {

// do something

// use ptr->fn() to call member functions

// use ptr->var to assign/access member variables

}

• Analogously

for (Node *ptr = head(); ptr != nullptr; ptr = ptr->next())

for (int i = 0; i != N; ++i)

STEPPING THROUGH

42

A LINKED LIST

• With the initialization and first iteration of the loop, we have:

• ptr != nullptr and thus we evaluate the body of the loop and then set ptr to the next pointer of
the node it is pointing to

• ptr != nullptr and thus we evaluate the loop and increment the pointer

• In the loop, we can access the value being pointed to by using ptr->retrieve()

Lecture 03 - Linked List 22

STEPPING THROUGH

43

A LINKED LIST

• ptr != nullptr and thus we evaluate the loop and increment the pointer

• Also, in the loop, we can access the next node in the list by using ptr->next()

• ptr != nullptr and thus we evaluate the loop and increment the pointer

• This last increment causes ptr == nullptr

• Here, we check and find ptr != nullptr is false, and thus we exit the loop

• Because the variable ptr was declared inside the loop, we can no longer access it

INT COUNT(INT) CONST

44

LINKED LIST MEMBER FUNCTION

• To implement int count(int) const, we simply check if the argument matches the element with
each step

• Each time we find a match, we increment the count

• When the loop is finished, we return the count

• The size function is simplification of count

int List::count(int n) const {

int node_count = 0;

for (Node *ptr = list(); ptr != nullptr; ptr = ptr->next()) {

if (ptr->retrieve() == n) {

++node_count;

}

}

return node_count;

}

Lecture 03 - Linked List 23

INT ERASE (INT)

45

LINKED LIST MEMBER FUNCTION

• To remove an arbitrary element, i.e., to implement
int erase(int), we must update the previous node

• For example, given

• if we delete 70, we want to end up with

ACCESS PRIVATE MEMBER VARIABLES

46

IN A LINKED LIST

• Notice that the erase function must modify the member variables of the node prior to the
node being removed

• Thus, it must have access to the member variable next_node

• We could supply the member function

void set_next(Node *);

• however, this would be globally accessible

• Possible solutions:

• Friends

• Nested classes

• Inner classes

Lecture 03 - Linked List 24

C++

47

FRIENDS

• In C++, you explicitly break encapsulation by declaring the class List to be a friend of the class
Node:

class Node {

Node *next() const;

// ... declaration ...

friend class List;

};

• Now, inside erase (a member function of List), you can modify all the member variables of any
instance of the Node class

INT ERASE (INT)

48

LINKED LIST MEMBER FUNCTION

• For example, the erase member function could be implemented using the following code

int List::erase(int n) {

int node_count = 0;

// ...

for (Node *ptr = head(); ptr != nullptr; ptr = ptr->next()) {

// ...

if (some condition) {

ptr->next_node = ptr->next()->next();

// ...

++node_count;

}

}

return node_count;

}

Lecture 03 - Linked List 25

DESTRUCTOR

49

LINKED LIST

• We dynamically allocated memory each time we added a new int into this list

• Suppose we delete a list before we remove everything from it
• This would leave the memory allocated with no reference to it

• Thus we need

class List {

private:

Node *list_head;

public:

List();

~List();

// ...etc...

};

DESTRUCTOR

50

LINKED LIST

• The destructor has to delete any memory which had been allocated but has not yet been
deallocated

• This is straight-forward enough:

while (!empty()) {

pop_front();

}

Lecture 03 - Linked List 26

COPY CONSTRUCTOR

51

• If such a function is defined, every time an instance is passed by value, the copy constructor is
called to make that copy

• Additionally, you can use the copy constructor as follows:

List ls1;

ls1.push_front(4);

ls1.push_front(2);

List ls2(ls1); // make a copy of ls1

• When an object is returned by value, again, the copy constructor is called to make a copy of
the returned value

ASSIGNMENT

52

• Suppose you have linked lists

List lst1, lst2;

lst1.push_front(35);

lst1.push_front(18);

lst2.push_front(94);

lst2.push_front(72);

Lecture 03 - Linked List 27

LINKED LIST

53

COMPLETE CLASS

class List {

private:

Node *list_head;

void swap(List &);

public:

// Constructors and destructors

List();

List(List const &);

List(List &&);

~List();

// Assignment operators

List &operator = (List const &);

List &operator = (List &&);

// Accessors

bool empty() const;

int size() const;

int front() const;

Node *head() const;

int count(int) const;

// Mutators

void push_front(int);

int pop_front();

int erase(int);

};

REFERENCE

54

FOR THIS LECTURE

Donald E. Knuth, The Art of Computer Programming, Volume 3:
Sorting and Searching, 2nd Ed., Addison Wesley, 1998, §5.4, pp.248-379.

Wikipedia, https://en.wikipedia.org/wiki/Linked_list

http://stackoverflow.com/error?aspxerrorpath=/questions/8848363/rvalue-reference-
with-assignement-operator

These slides are provided for the CS 213Data Structures and Algorithms course. The material in it reflects Imran Ihsan’s best judgment in light of the information
available to him at the time of preparation. Any reliance on these course slides by any party for any other purpose are the responsibility of such parties. Imran
Ihsan accepts no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on these course slides for any other
purpose than that for which it was intended.

