ABSTRACT SORTED LIST

• Previously, we discussed Abstract Lists: the objects are explicitly linearly ordered by the programmer.

• We will now discuss the Abstract Sorted List:
 • The relation is based on an implicit linear ordering.

• Certain operations no longer make sense:
 • push_front and push_back are replaced by a generic insert.

• Queries that may be made about data stored in a Sorted List ADT include:
 • Finding the smallest and largest entries.
 • Finding the kth largest entry.
 • Find the next larger and previous smaller objects of a given object which may or may not be in the container.
 • Iterate through those objects that fall on an interval [a, b].
BINARY SEARCH TREES

DEFINITION

• Graphically, we may relationship

- Each of the two sub-trees will themselves be binary search trees
- Notice that we can already use this structure for searching: examine the root node and if we have not found what we are looking for:
 - If the object is less than what is stored in the root node, continue searching in the left sub-tree
 - Otherwise, continue searching the right sub-tree

• With a linear order, one of the following three must be true:
 \[a < b \quad a = b \quad a > b \]

BINARY SEARCH TREES

DEFINITION

• Thus, we define a non-empty binary search tree as a binary tree with the following properties:
 - The left sub-tree (if any) is a binary search tree and all elements are less than the root element,
 - The right sub-tree (if any) is a binary search tree and all elements are greater than the root element
Binary Search Trees

DEGENERATE BINARY TREE

- Unfortunately, it is possible to construct degenerate binary search trees

- This is equivalent to a linked list, i.e., $O(n)$

EXAMPLES

- All these binary search trees store the same data
BST

DUPLICATE ELEMENTS

- We will assume that in any binary tree, we are not storing duplicate elements unless otherwise stated
 - In reality, it is seldom the case where duplicate elements in a container must be stored as separate entities

- You can always consider duplicate elements with modifications to the algorithms we will cover

BST

IMPLEMENTATION

- We will look at an implementation of a binary search tree in the same spirit as we did with our Single_list class
 - We will have a Binary_search_nodes class
 - A Binary_search_tree class will store a pointer to the root

- We will use templates, however, we will require that the class overrides the comparison operators
- Any class which uses this binary-search-tree class must therefore implement:

  ```cpp
  bool operator<=( Type const &, Type const & );
  bool operator< ( Type const &, Type const & );
  bool operator==( Type const &, Type const & );
  ```

- That is, we are allowed to compare two instances of this class
- Examples: int and double
#include "Binary_node.h"

template <typename Type>
class Binary_search_tree;

template <typename Type>
class Binary_search_node:public Binary_node<Type> {
 using Binary_node<Type>::element;
 using Binary_node<Type>::left_tree;
 using Binary_node<Type>::right_tree;

 public:
 Binary_search_node(Type const &);

 Binary_search_node *left() const;
 Binary_search_node *right() const;

 Type front() const;
 Type back() const;
 bool find(Type const &) const;

 void clear();
 bool insert(Type const &);
 bool erase(Type const &, Binary_search_node * &);

 friend class Binary_search_tree<Type>;
};
BST

CONSTRUCTOR

- The constructor simply calls the constructor of the base class
 - Recall that it sets both left_tree and right_tree to nullptr
 - It assumes that this is a new leaf node

```cpp
template<typename Type>
Binary_search_node<Type>::Binary_search_node( Type const &obj ) :
    Binary_node<Type>( obj ) {  
    // Just calls the constructor of the base class  
}
```

BST

ACCESSORS

- Because it is a derived class, it already inherits the function:
  ```cpp
  Type retrieve() const;
  ```
- Because the base class returns a pointer to a Binary_node, we must recast them as Binary_search_node:

```cpp
template<typename Type>
Binary_search_node<Type> *Binary_search_node<Type>::left() const {  
    return reinterpret_cast<Binary_search_node *>( Binary_node<Type>::left() );  
}

template<typename Type>
Binary_search_node<Type> *Binary_search_node<Type>::right() const {  
    return reinterpret_cast<Binary_search_node *>( Binary_node<Type>::right() );  
}
```
Binary Search Trees

INHERITED MEMBER FUNCTIONS

- The member functions

  ```
  bool empty() const
  bool is_leaf() const
  int size() const
  int height() const
  ```

- are inherited from the base class `Binary_node`

Finding the Minimum Object

```
template<typename Type>
Type Binary_search_node<Type>::front() const {
  if ( empty() ) {
    throw underflow();
  }
  return ( left()->empty() ) ? retrieve() : left()->front();
}
```
BST

FINDING THE MINIMUM OBJECT

```cpp
template<typename Type>
Type Binary_search_node<Type>::back() const {
    if ( empty() ) {
        throw underflow();
    }
    return ( right()->empty() ) ? retrieve() : right()->back();
}
```

- The extreme values are not necessarily leaf nodes

```cpp
    11
   / \  39
  8   29
 / \  / \  \
3  19 24 44
```

BST

FIND

- The implementation is similar to front and back:

```cpp
template<typename Type>
bool Binary_search_node<Type>::find( Type const &obj ) const {
    if ( empty() ) {
        return false;
    } else if ( retrieve() == obj ) {
        return true;
    }

    return ( obj < retrieve() ) ?
        left()->find( obj ) : right()->find( obj );
}
```
Recall that a Sorted List is implicitly ordered
- It does not make sense to have member functions such as `push_front` and `push_back`
- Insertion will be performed by a single `insert` member function which places the object into the correct location

An insertion will be performed at a leaf node:
- Any empty node is a possible location for an insertion

The values which may be inserted at any empty node depend on the surrounding nodes

For example, this node may hold 48, 49, or 50

An insertion at this location must be 35, 36, 37, or 38
Binary Search Trees

INSERT

- Like find, we will step through the tree
 - If we find the object already in the tree, we will return
 - The object is already in the binary search tree (no duplicates)
 - Otherwise, we will arrive at an empty node
 - The object will be inserted into that location
 - The run time is \(O(h) \)

INSERT

- In inserting the value 52, we traverse the tree until we reach an empty node
 - The left sub-tree of 54 is an empty node

- A new leaf node is created and assigned to the member variable `left_tree`
In inserting 40, we determine the right sub-tree of 39 is an empty node.

A new leaf node storing 40 is created and assigned to the member variable right_tree.

```
BST
INSERT

• In inserting 40, we determine the right sub-tree of 39 is an empty node

• A new leaf node storing 40 is created and assigned to the member variable right_tree

BST
INSERT

template <typename Type>
bool Binary_search_node<Type>::insert( Type const &obj, Binary_search_node *&ptr_to_this ) {
    if ( empty() ) {
        ptr_to_this = new Binary_search_node<Type>( obj );
        return true;
    } else if ( obj < retrieve() ) {
        return left()->insert( obj, left_tree );
    } else if ( obj > retrieve() ) {
        return right()->insert( obj, right_tree );
    } else {
        return false;
    }
}
```
BST INSERT

- It is assumed that if neither of the conditions:

 \[
 \text{obj} < \text{retrieve()}
 \]

 \[
 \text{obj} > \text{retrieve()}
 \]

- then \(\text{obj} == \text{retrieve()}\) and therefore we do nothing
 - The object is already in the binary search tree

BST INSERT

- Blackboard example:
 - In the given order, insert these objects into an initially empty binary search tree:

 \[
 31 \ 45 \ 36 \ 14 \ 52 \ 42 \ 6 \ 21 \ 73 \ 47 \ 26 \ 37 \ 33 \ 8
 \]

 - What values could be placed:
 - To the left of 21?
 - To the right of 26?
 - To the left of 47?

 - How would we determine if 40 is in this binary search tree?
 - Which values could be inserted to increase the height of the tree?
A node being erased is not always going to be a leaf node.
There are three possible scenarios:
- The node is a leaf node,
- It has exactly one child, or
- It has two children (it is a full node)

A leaf node simply must be removed and the appropriate member variable of the parent is set to nullptr.
- Consider removing 75

The node is deleted and left_tree of 81 is set to nullptr.
Erasing the node containing 40 is similar:

- The node is deleted and `right_tree` of 39 is set to `nullptr`.

Removing a node with one child:

- If a node has only one child, we can simply promote the sub-tree associated with the child.
 - Consider removing 8 which has one left child.

- The node 8 is deleted and the `left_tree` of 11 is updated to point to 3.
There is no difference in promoting a single node or a sub-tree.

To remove 39, it has a single child 11.

The node containing 39 is deleted and left_node of 42 is updated to point to 11.

Notice that order is still maintained.

Consider erasing the node containing 99.
Finally, we will consider the problem of erasing a full node, e.g., 42.

We will perform two operations:
- Replace 42 with the minimum object in the right sub-tree
- Erase that object from the right sub-tree

In this case, we replace 42 with 47.
- We temporarily have two copies of 47 in the tree.
- We now recursively erase 47 from the right sub-tree.
 - We note that 47 is a leaf node in the right sub-tree.
Leaf nodes are simply removed and `left_tree` of 51 is set to `nullptr`

- Notice that the tree is still sorted:
- 47 was the least object in the right sub-tree

Suppose we want to erase the root 47 again:

- We must copy the minimum of the right sub-tree
- We could promote the maximum object in the left sub-tree and achieve similar results
We copy 51 from the right sub-tree

We must proceed by delete 51 from the right sub-tree

In this case, the node storing 51 has just a single child

We delete the node containing 51 and assign the member variable left_tree of 70 to point to 59
Note that after seven removals, the remaining tree is still correctly sorted.

In the two examples of removing a full node, we promoted:
- A node with no children
- A node with right child
- Is it possible, in removing a full node, to promote a child with two children?
Recall that we promoted the minimum element in the right sub-tree

- If that node had a left sub-tree, that sub-tree would contain a smaller value

In order to properly remove a node, we will have to change the member variable pointing to the node

- To do this, we will pass that member variable by reference

- Additionally: We will return 1 if the object is removed and 1 if the object was not found

```
template<typename Type>
bool Binary_search_node<Type>::erase( Type const &obj, Binary_search_node *&ptr_to_this ) {
    if ( empty() ) {
        return false;
    }
    else if ( obj == retrieve() ) {
        if ( is_leaf() ) {  // leaf node
            ptr_to_this = nullptr;
            delete this;
        } else if ( !left()->empty() && !right()->empty() ) {  // full node
            element = right()->front();
            right()->erase( retrieve(), right_tree );
        } else {  // only one child
            ptr_to_this = ( !left()->empty() ) ? left() : right();
            delete this;
        }
        return true;
    } else if ( obj < retrieve() ) {
        return left()->erase( obj, left_tree );
    } else {
        return right()->erase( obj, right_tree );
    }
}
```
BST

IMPLEMENTATION

```cpp
template <typename Type>
class Binary_search_tree {
    private:
        Binary_search_node<Type> *root_node;
        Binary_search_node<Type> *root() const;
    public:
        Binary_search_tree();
        ~Binary_search_tree();
        bool empty() const;
        int size() const;
        int height() const;
        Type front() const;
        Type back() const;
        int count( Type const &obj ) const;
        void clear();
        bool insert( Type const &obj );
        bool erase( Type const &obj );
};
```

CONSTRUCTOR, DESTRUCTOR, AND CLEAR

```cpp
template <typename Type>
Binary_search_tree<Type>::Binary_search_tree():
    root_node( nullptr ) { // does nothing
}

template <typename Type>
Binary_search_tree<Type>::~Binary_search_tree() {
    clear();
}

template <typename Type>
void Binary_search_tree<Type>::clear() {
    root()->clear( root_node );
}
```
BST
ROOT, EMPTY AND SIZE

template<typename Type>
Binary_search_tree<Type> *Binary_search_tree<Type>::root() const {
 return tree_root;
}

template<typename Type>
bool Binary_search_tree<Type>::empty() const {
 return root()->empty();
}

template<typename Type>
int Binary_search_tree<Type>::size() const {
 return root()->size();
}

BST
HEIGHT AND COUNT

template<typename Type>
int Binary_search_tree<Type>::height() const {
 return root()->height();
}

template<typename Type>
bool Binary_search_tree<Type>::find(Type const &obj) const {
 return root()->find(obj);
}
// If root() is nullptr, 'front' will throw an underflow exception
template <typename Type>
Type Binary_search_tree<Type>::front() const {
 return root()->front();
}

// If root() is nullptr, 'back' will throw an underflow exception
template <typename Type>
Type Binary_search_tree<Type>::back() const {
 return root()->back();
}

template <typename Type>
bool Binary_search_tree<Type>::insert(Type const &obj) {
 return root()->insert(obj, root_node);
}

template <typename Type>
bool Binary_search_tree<Type>::erase(Type const &obj) {
 return root()->erase(obj, root_node);
}
OTHER RELATION-BASED OPERATIONS

- We will quickly consider two other relation-based queries that are very quick to calculate with an array of sorted objects:
 - Finding the previous and next entries, and
 - Finding the kth entry

PREVIOUS AND NEXT OBJECTS

- All the operations up to now have been operations which work on any container: count, insert, etc.
 - If these are the only relevant operations, use a hash table

- Operations specific to linearly ordered data include:
 - Find the next larger and previous smaller objects of a given object which may or may not be in the container
 - Find the kth entry of the container
 - Iterate through those objects that fall on an interval [a, b]

- We will focus on finding the next largest object
 - The others will follow
PREVIOUS AND NEXT OBJECTS

• To find the next largest object:
 • If the node has a right sub-tree, the minimum object in that sub-tree is the next-largest object.

If, however, there is no right sub-tree:
 • It is the next largest object (if any) that exists in the path from the root to the node.

PREVIOUS AND NEXT OBJECTS

• More generally: what is the next largest entry of an arbitrary object?
 • This can be found with a single search from the root node to one of the leaves—an O(h) operation.
 • This function returns the object if it did not find something greater than it.

```cpp
template<typename Type>
Type Binary_search_node<Type>::next( Type const &obj ) const {
  if ( empty() ) {
    return obj;
  } else if ( retrieve() == obj ) {
    return ( right()EMPTY() ) ? obj : right()->front();
  } else if ( retrieve() > obj ) {
    Type tmp = left()->next( obj );
    return ( tmp == obj ) ? retrieve() : tmp;
  } else {
    return right()->next( obj );
  }
}
```
FINDING THE \(k \)TH OBJECT

Another operation on sorted lists may be finding the \(k \)th largest object
- Recall that \(k \) goes from 0 to \(n - 1 \)
- If the left-sub-tree has \(\ell = k \) entries, return the current node,
- If the left sub-tree has \(\ell < k \) entries, return the \(k \)th entry of the left sub-tree,
- Otherwise, the left sub-tree has \(\ell > k \) entries, so return the \((k - \ell - 1)\)th entry of the right sub-tree

```
template <typename Type>
Type Binary_search_tree<Type>::at(int k) const {
    return (k < 0 || k >= size()) ? Type() : root()->at(k);
    // Need to go from 0, ..., n - 1
}
```

```cpp
template <typename Type>
Type Binary_search_node<Type>::at(int k) const {
    if (left()->size() == k) {
        return retrieve();
    } else if (left()->size() > k) {
        return left()->at(k);
    } else {
        return right()->at(k - left()->size() - 1);
    }
}
```
FINDING THE Kth OBJECT

- We must now update insert(...) and erase(...) to update it

```cpp
template <typename Type>
bool Binary_search_node<Type>::insert( Type const &obj,
        Binary_search_node *&ptr_to_this ) {
    if ( empty() ) {
        ptr_to_this = new Binary_search_node<Type>( obj );
        return true;
    }
    else if ( obj < retrieve() ) {
        return left()->insert( obj, left_tree ) ? ++tree_size : false;
    }
    else if ( obj > retrieve() ) {
        return right()->insert( obj, right_tree ) ? ++tree_size : false;
    }
    else {
        return false;
    }
}
```

Clever trick: in C and C++, any non-zero value is interpreted as true