
Chapter 1.Algorithmic Warm -up

Chapter 01.
Algorithm Warm -up

1. Introduction to Course

2. Why Study Algorithms?

3. Fibonacci Numbers

4. Greatest Common Divisor

5. Big-O Notation

Chapter 1.Algorithmic Warm -up

Introduction to Course

2

Chapter 1.Algorithmic Warm -up

Automate this
Å2 million speech patterns (identify a caller's personality style)

Ådirect the caller with a compatible customer support representative

Algorithms that Changed the Future

1. Search Engine Indexing ïFinding Needles in the Worldôs Biggest Haystack

2. PageRank ïThe Technology That Launched Google

3. Public-key Cryptography ïSending Secrets on a Postcard

4. Error -Correcting Codes ïMistakes That Fix Themselves

5. Pattern recognition ïLearning from Experience

6. Data Compression ïSomething for Nothing

7. Database ïThe Quest for Consistency

8. Digital Signatures ïWho Really Wrote This Software?

9. Google Maps ïEveryone uses this

3

Chapter 1.Algorithmic Warm -up

Algorithms
ÅAn algorithm is a set of instructions that state how a task is to be performed.
ÅA Knitting Pattern
ÅSetting up a new XBOX Console
ÅRecipe for Cooking Pizza
ÅDirections for Walking to Cafeteria Building
ÅOperations to turn an MP3 File in a sequence of sounds

ñAn algorithm is an ordered, deterministic,
executable, terminating set of instructions.ò

Algorithms ïOn Computers
ÅThe abstract specification of the processes that are running on all our computers, phones, games

consoles, databases, autopilots, banking systems, autonomous vehicles, networks, ...
ÅAlgorithms process information maintained in data structures and produce actions and results.

4

Chapter 1.Algorithmic Warm -up

Data Structures and ADTs

ÅData Structures
ÅThe frameworks we use to maintain the data that

are processed by the algorithms.

ÅInside data structures, we use algorithms to
manipulate the data efficiently.

ÅAbstract Data Types
Åhigher level patterns for organizing data structures

Åpatterns for reading data from the structure, for
removing data, and for adding new data.

5

this sketch of a 'graphô is an
abstract data type

2D matrix implementing the graph is
data structure

Chapter 1.Algorithmic Warm -up

Algorithms : three questions

What is the Point?
1. Your programs must be correct

Ånot just bug-free code,
Åbut implementing an algorithm that does what it is supposed to do.

2. Your programs should be efficient
Åprograms that take too long to run are useless
Åunderstand the implication of choosing different library functions
Åunderstand the implication of choosing different design patterns

Åwhat may be easier for you to code may be much worse to run é

1. Faster machines means users expect to solve bigger problems
2. Some problems have known limits on their efficiency

6

Does it do
what it is
supposed

to do?

How long
will it
take?

How
much

space does
it need to

run?

Yawn ïmachines are getting faster every year
ïwho cares about efficiency?

Chapter 1.Algorithmic Warm -up

Algorithms: é and a fourth question

ÅHow do we implement that?

ÅWe are going to use C++ or JAVA or Python.
Åunderstand the library functions

Ålearn how to implement structures and algorithms efficiently

ÅThe course is a mix of theory and practice.

7

Chapter 1.Algorithmic Warm -up

Why Study Algorithms?

Understand the type of problem that will be covered in this class.

Recognize some problems for which sophisticated algorithms might not be necessary.

Describe some artificial intelligence problems which go beyond the scope of this course.

8

Chapter 1.Algorithmic Warm -up

Straight forward Programming Problems

ÅHas straight forward implementation.

ÅNatural solution is already efficient.

ÅHas linear scan.

ÅCannot do much better.

ÅThe obvious program works.

Display a given text Copy a File Search for a given word Linear Scan

9

Chapter 1.Algorithmic Warm -up

Algorithms Problems

ÅNot so clear what to do?

ÅNot clear how to do

ÅSimple ideas too slow

ÅRoom for optimization

Find the Shortest Path Between Locations

Measure Similarity of Documents

Find the Best Assignment of Students to Dorm Rooms

10

Chapter 1.Algorithmic Warm -up

Artificial Intelligence Problems

ÅHard to even clearly state

Understand Natural Language Play Games WellIdentify Objects In Photographs

11

Chapter 1.Algorithmic Warm -up

What Weôll Cover

ÅFocus on algorithms problems.

ÅClearly formulated.

ÅHard to do efficiently.

12

Problem Statement Algorithm

Straightforward Algorithm

Slightly More Complicated Algorithm

That is Very Fast
Take Too Long

Chapter 1.Algorithmic Warm -up

Maximum Pairwise Product ïProgramming Challenge

Given a sequence of non-negative integers a0,é,anī1, find the maximum pairwise product,

that is, the largest integer that can be obtained by multiplying two different elements

from the sequence or, more formally,

13

ÍÁØὥὥ

ὥὥὲὨὥύὭὸὬὭ Ὦ
ὍὸὧὥὲὦὩὸὬὩὧὥίὩὸὬὥὸὥ ὥ

Chapter 1.Algorithmic Warm -up

Input / output

Input
The first line of the input contains an integer n.

The next line contains n non-negative integers
a0,é,anī1 (separated by spaces).

Constraints

2 Ò n Ò 2ẗ105;

0 Ò a0,é,anī1 Ò 10
5.

Output

Output a single number ð

the maximum pairwise product.

ÅSample 1
Input

Output

Explanation

ÅSample 2
Input

Output

Explanation

14

3

1 2 3

1

2

61

10

7 5 14 2 8 8 10 1 2 3

1

2

1401

6 = 3 x 2

140 = 14 x 10

Chapter 1.Algorithmic Warm -up

Starter Solution
#include <iostream>

#include <vector>

using std::vector;

using std::cin;

using std::cout;

int MaxPairwiseProduct(const vector<int>& numbers) {

int result = 0;

int n = numbers.size();

for (int i = 0; i < n; ++ i) {

for (int j = i + 1; j < n; ++j) {

if (numbers[i] * numbers[j] > result) result = numbers[i] * numbers[j];

}

}

return result;

}

int main() {

int n;

cin >> n;

vector<int> numbers(n);

for (int i = 0; i < n; ++ i) cin >> numbers[i];

int result = MaxPairwiseProduct(numbers);

cout << result << " \ n";

return 0;

}

Test the System
Input

Output

Explanation

15

2

100000 90000

1

2

4100654081

Correct Output: 9000000000

Failed Case: Wrong Answer

Chapter 1.Algorithmic Warm -up

Fixing Integer Overflow Bug
#include <iostream>

#include <vector>

using std::vector;

using std::cin;

using std::cout;

double MaxPairwiseProduct(const vector<int>& numbers) {

double result = 0;

int n = numbers.size();

for (int i = 0; i < n; ++ i) {

for (int j = i + 1; j < n; ++j) {

if (((double)numbers[i]) * ((double)numbers[j]) > result)

result = ((double)numbers[i]) * numbers[j];

}

}

return result;

}

int main() {

int n;

cin >> n;

vector<int> numbers(n);

for (int i = 0; i < n; ++ i) cin >> numbers[i];

double result = MaxPairwiseProduct(numbers);

cout << result << " \ n";

return 0;

}

Test Again
Input

Output

Explanation

16

2

100000 90000

1

2

90000000001

Correct Answer

Chapter 1.Algorithmic Warm -up

However, System Fails Again

ÅOur program performs about n2 steps on a sequence of length n.

ÅFor the maximal possible value n = 200,000 =2 ẗ105,

ÅThe number of steps is about 10,000,000,000=10 10.

ÅThis is too much.

ÅModern machines can perform roughly 109 basic operations per second.

ÅThus, we need a faster algorithm.

ÅIn search of an inspiration, you start to play with small examples.

ÅHow to find the maximal pairwise product of a sequence 1,2,3,4?

ÅWell, of course, it suffices to multiply the two largest numbers ð3 and 4.

ÅAnd this is true in general since all numbers in our sequence are non-negative.

17

Chapter 1.Algorithmic Warm -up

Implementing A Faster Solution
double MaxPairwiseProductFast(const vector<int>& numbers) {

int n = numbers.size();

int max_index1 = -1;

for (int i = 0; i < n; ++ i)

if ((max_index1 == -1) || (numbers[i] > numbers[max_index1]))

max_index1 = i;

int max_index2 = -1;

for (int j = 0; j < n; ++j)

if ((numbers[j] != numbers[max_index1]) &&

((max_index2 == -1) || (numbers[j] > numbers[max_index2])))

max_index2 = j;

return ((double)(numbers[max_index1])) * numbers[max_index2];

}

int main() {

int n;

cin >> n;

vector<int> numbers(n);

for (int i = 0; i < n; ++ i) cin >> numbers[i];

double result1 = MaxPairwiseProduct(numbers);

double result2 = MaxPairwiseProductFast(numbers);

cout << result << " \ n";

return 0; }

Testing
Input

Output

Explanation

18

3

7 2 5

1

2

35

35
1

Correct Answer

Chapter 1.Algorithmic Warm -up

StressTest
while (true) {

int n = rand() % 10 + 2;

cerr << n << " \ n";

vector<int> a;

for (int i = 0; i < n; ++ i) a.push_back(rand() % 100000);

for (int i = 0; i < n; ++ i) cerr << a[i] << ' ';

cerr << " \ n";

double res1 = MaxPairwiseProduct(a);

double res2 = MaxPairwiseProductFast(a);

if (res1 != res2)

{ cerr << "Wrong answer: " << res1 << ' ' << res2 << " \ n";

break; }

else { cerr << "OK\ n"; }

}

Run Stress Test
...
OK

3
67232 68874 69499
OK

8
6132 56210 45236 95361 68380 16906 80495 95298
OK

11
62180 1856 89047 36823 14251 8362 34171 93584 87362 83341 8784
OK

6
21468 16859 82178 70496 82939 44491
OK

11
68165 30342 87637 74297 2904 32873 86010 87637 66131 82858 82935
Wrong answer: 7680243769 7537658370

19

Chapter 1.Algorithmic Warm -up

Stress Test ïSmall and Simple Input
while (true) {

int n = rand() % 4 + 2;

cerr << n << " \ n";

vector<int> a;

for (int i = 0; i < n; ++ i) a.push_back(rand() % 10);

for (int i = 0; i < n; ++ i) cerr << a[i] << ' ';

cerr << " \ n";

double res1 = MaxPairwiseProduct(a);

double res2 = MaxPairwiseProductFast(a);

if (res1 != res2)

{ cerr << "Wrong answer: " << res1 << ' ' << res2 << " \ n";

break; }

else { cerr << "OK\ n"; }

}

Run Stress Test
...
OK

4
2 6 1 8
OK

5
9 2 0 2 3
OK

5
5 9 2 2 8
OK

3
7 3 6
OK

5
2 9 3 1 9
Wrong answer: 81 27

20

Chapter 1.Algorithmic Warm -up

A Faster Solution
double MaxPairwiseProductFast(const vector<int>& numbers) {

int n = numbers.size();

int max_index1 = -1;

for (int i = 0; i < n; ++ i)

if ((max_index1 == -1) || (numbers[i] > numbers[max_index1]))

max_index1 = i;

int max_index2 = -1;

for (int j = 0; j < n; ++j)

if ((numbers[j] != numbers[max_index1]) && ((max_index2 == -1) || (numbers[j] > numbers[max_index2])))

max_index2 = j;

cout<< max_index1 << ó ó << max_index2 << ñ\nò;

return ((double)(numbers[max_index1])) * numbers[max_index2];

}

21

Chapter 1.Algorithmic Warm -up

A Faster Solution ïCorrect Answer
double MaxPairwiseProductFast(const vector<int>& numbers) {

int n = numbers.size();

int max_index1 = -1;

for (int i = 0; i < n; ++ i)

if ((max_index1 == -1) || (numbers[i] > numbers[max_index1]))

max_index1 = i;

int max_index2 = -1;

for (int j = 0; j < n; ++j)

if ((j != max_index1) && ((max_index2 == -1) || (numbers[j] > numbers[max_index2])))

max_index2 = j;

return ((double)(numbers[max_index1])) * numbers[max_index2];

}

22

Chapter 1.Algorithmic Warm -up

Fibonacci Numbers

Understand the definition of the Fibonacci numbers.

Show that the naive algorithm for computing them is slow.

Efficiently compute large Fibonacci numbers.

23

Chapter 1.Algorithmic Warm -up

Fibonacci Series ïDefinition

Ὂ

πȟ
ρȟ

Ὂ Ὂ ȟ

ὲ πȟ
ὲ ρȟ
ὲ ρȢ

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Developed to Study

Rabbit Populations

24

Chapter 1.Algorithmic Warm -up

Rapid Growth

Lemma Ὂ ς Ὢέὶὲ φ

Proof By induction Base case: n = 6, 7 (by direct computation).

Inductive step: Ὂ Ὂ Ὂ ς ς ςȢς ς

F20 = 6765

F50 = 12586269025

F100 = 354224848179261915075

F500 = 13942322456169788013972438287040728395007025658769730726

4108962948325571622863290691557658876222521294125

25

Chapter 1.Algorithmic Warm -up

Naïve Algorithm

FibRecurs(n)

if n Ò 1:

return n

else:

return FibRecurs(nī1) + FibRecurs(nī2)

Running Time

ÅLet T(n) denote the number of lines of code
executed by FibRecurs(n).

If n Ò 1:T(n) = 2

If n Ó 2:T(n) = 3 + T(n ī 1) + T(n ī 2)

26

T(n) = 2 if n Ò 1
T(n ī 1) + T(n ī 2) + 3 else

Therefore: T(n) Ó Fn
T(100) å 1.77 Ŀ 1021
(1.77 sextillion)

Takes 56,000 years at 1GHz.

Chapter 1.Algorithmic Warm -up

Why so slow?

Fn

Fn-1

Fn-2

Fn-3

Fn-4 Fn-5

Fn-4

Fn-5 Fn-6

Fn-3

Fn-4

Fn-5 Fn-6

Fn-5

Fn-6 Fn-7

Fn-2

Fn-3

Fn-4

Fn-5 Fn-6

Fn-5

Fn-6 Fn-7

Fn-4

Fn-5

Fn-6 Fn-7

Fn-6

Fn-7 Fn-8

27

Chapter 1.Algorithmic Warm -up

Why so slow?

Fn

Fn-1

Fn-2

Fn-3

Fn-4 Fn-5

Fn-4

Fn-5 Fn-6

Fn-3

Fn-4

Fn-5 Fn-6

Fn-5

Fn-6 Fn-7

Fn-2

Fn-3

Fn-4

Fn-5 Fn-6

Fn-5

Fn-6 Fn-7

Fn-4

Fn-5

Fn-6 Fn-7

Fn-6

Fn-7 Fn-8

28

Chapter 1.Algorithmic Warm -up

Efficient Algorithm

FibList (n)

create an array F [0 . . . n]

F[0] Ŷ 0

F[1] Ŷ 1

for i from 2 to n:

F[i] ŶF[iī1] + F[iī2]

return F[n]

T(n) = 2n + 2.

So, T(100) = 202.

Easy to compute.

29

Imitate hand computation:
0, 1, 1, 2, 3, 5, 8, 13

0 + 1 = 1
1 + 1 = 2
1 + 2 = 3
2 + 3 = 5
3 + 5 = 8
5 + 8 = 13
é

Chapter 1.Algorithmic Warm -up

Greatest Common Divisors

Define greatest common divisors.

Compute greatest common divisors inefficiently.

Implement the Euclidean Algorithm.

Approximate the runtime.

30

Chapter 1.Algorithmic Warm -up

GreatestCommon Divisor

ÅPut fraction in simplest form.

ÅDivide numerator and denominator by d, to get
Ⱦ

Ⱦ

ÅNeed d to divide a and b.

ÅWant d to be as large as possible

ÅDefinition
ÅFor integers, a and b, their greatest common divisor or gcd(a, b) is

the largest integer d so that d divides both a and b.

ÅApplications
ÅNumber Theory

ÅCryptography

31

Chapter 1.Algorithmic Warm -up

GCD ïAlgorithm

Computation
Compute GCD

Input: Integers a,b²0

Output: gcd(a,b)

Run on Large Numbers Like

gcd(3918848, 1653264)

Naïve Algorithm
Function NaïveGCD(a, b)

best Ŷ 0

for d from 1 to a + b:

if d|a and d|b :

best Ŷ d

return best

Runtime approximately a + b.

Very slow for 20 digit numbers

32

Chapter 1.Algorithmic Warm -up

GCD ïLemma

Let aŹbe the remainder when a is divided by b, then

gcd(a, b) = gcd(aŹ, b) = gcd(b, aŹ)

Proof

a = aŹ + bq for some q

d divides a and b if and only if it divides aŹ and b

33

Chapter 1.Algorithmic Warm -up

Euclidean Algorithm

Function EuclidGCD(a, b)

if b = 0:

return a

aŹ Ŷ the remainder when a is divided by b

return EuclidGCD(b, aŹ)

Runtime
ÅEach step reduces the size of numbers by about a factor of 2.

ÅTakes about log(ab) steps.

ÅGCDs of 100-digit numbers takes about 600 steps.

ÅEach step a single division.

Example:

gcd(3918848, 1653264)

= gcd(1653264, 612320)

= gcd(612320, 428624)

= gcd(428624, 183696)

= gcd(183696, 61232)

= gcd(61232, 0)

= 61232

34

Chapter 1.Algorithmic Warm -up

Big-O Notation

Describe some of the issues involved with computing the runtime of an actual program.

Understand why finding exact runtimes is a problem. Understand the basic idea behind asymptotic runtimes.

Describe some of the advantages to using asymptotic runtimes. Understand the meaning of Big-O notation.

Describe some of the advantages and disadvantages of using Big-O notation.

35

Chapter 1.Algorithmic Warm -up

Runtime Analysis: Fibonacci Series

FibList (n)

create an array F [0 . . . n] Depends on memory management system

F[0] Ŷ 0 Assignment

F[1] Ŷ 1 Assignment

for i from 2 to n: Increment, Comparison, Branch

F[i] ŶF[iī1] + F[iī2]Lookup, Assignment, Addition of big integers

return F[n] Lookup, Return

2n + 2 lines of code.

Does this really describe the runtime of the algorithm?

36

Chapter 1.Algorithmic Warm -up

Computing Runtime

ÅProblem
ÅFiguring out accurate runtime is a huge mess
ÅIn practice, you might not even know some of these details

ÅGoals
ÅWant to: Measure runtime without knowing these details.
ÅGet results that work for large inputs.

37

Speed of the Computer

The System Architecture

The Compiler Being Used

Details of the
Memory Hierarchy

Chapter 1.Algorithmic Warm -up

Idea & solution

ÅAll these issues can multiply runtimes by (large) constant.

ÅSo, measure runtime in a way that ignores constant multiples.

ÅUnfortunately, 1 second, 1 hour, 1 year only differ by constant multiples.

ÅConsider asymptotic runtimes.

ÅHow does runtime scale with input size.

Asymptotic Notation

38

